
HEAT TRANSFER AND RESISTANCE OF AN 

INCOMPRESSIBLE LIQUID IN THE INITIAL 

PORTION OF A CIRCULAR TUBE FOR VARIOUS 

LAWS OF HEAT SUPPLY 

E. L. Spektor and Yu. P. Rassadkin UDC 532.5.013.12:536.242 

We cons ide r  heat  t r a n s f e r  for  the case  of l a m i na r  flow of an i ncompres s ib l e  Iiquid in the 
ini t ia l  por t ion  of a c i r c u l a r  tube with a pa r abo l i c  ve loc i ty  p rof i l e  at i ts  entrance.  Analy t ica l  
exp re s s ions  a r e  obtained for  the dependence of the Nussel t  number  Nu and the r e s i s t a n c e  co-  
eff icient  ~ Re on the longi tud ina l  coordina te  for  va r ious  laws of heat t r a n s f e r .  

F o r  the case  in which the heat supply along a tube is a function of the longitudinal coordina te  the 
exis t ing methods of ca lcula t ing  the local  Nusse l t  number  a r e  labor ious  and r e qu i r e  a cons ide rab le  number  
of manipula t ions ,  tn this  p a p e r  we use an approx imate  ana ly t ica l  method to solve the p r o b l e m  of the l a m i -  
nar  flow of an i n c o m p r e s s i b l e  liquid in the ini t ia l  por t ion  of a c i r c u l a r  tube with a pa rabo l i c  ve loc i ty  p r o -  
f i le at its en t rance;  the heat supply along the tube wall is a s sumed  to be a r b i t r a r y ;  we a lso  solve the p r o b -  
l em of liquid flow in the ini t ia l  por t ion  of a t h e r m a l l y  insula ted tube where  hydrodynamic  s t ab i l i za t ion  at 
the tube en t rance  is absent .  

We obtain exp re s s ions  for  the Nussel t  number  and the r e s i s t a n c e  coeff icient  acceptab le  for  eng inee r -  
ing ca lcu la t ions .  Cons ider  the flow of an i n c o m p r e s s i b l e  liquid in the ini t ia l  por t ion  of a c i r c u l a r  tube. 
We a s sume  the l iquid to have constant  phys ica l  p r o p e r t i e s  and that i ts t e m p e r a t u r e  p rof i l e  at the tube en- 
t r ance  is constant  over  a given c r o s s  sect ion.  

In the p r e s e n c e  of hydrodynamic  s t ab i l i za t ion  the ve loc i ty  prof i le  as a function of the rad ius  follows 
P o i s e u i l l e : s  law: 

E (§ u = 2 u  1 - - 4  

and the ene rgy  equation has the fo rm 

20%u [ 1 -- 4 

with the boundary and ini t ia l  condit ions 

o--2 T -  " oT -g-r 

OT 
- - = 0  for r = O ,  
Or 

k OT d 
- -  = q  for r = , 
dr 2 

T = T o for x = O. 

We int roduce the v a r i a b l e s  X = x / d P e ,  
we wr i te  the ene rgy  equation in the following fo rm:  

OT 
( I -- r 2) - -  

OX 

r '  = 2 r /d ,  T' = T/To, q' = 2q/dh, 

2 o (rOT  
= - - 7  6T \ - s  / 

and, omit t ing p r i m e s  henceforth,  

(i) 
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with boundary and initial conditions 

OT 0 for r 0, (2a) 
Or 
OT 
- - = q  for r = l ,  (2b) 
Or 
T = 1 for X = 0. (2c) 

We solve Eq. (1) by a method which is a genera l iza t ion  of that p resen ted  in [1, 3] to the case  of the 
flow of an incompress ib le  liquid in a cyl indrical  channel. In doing this ,  we s o l v e t h e  equation for  its 
highest der iva t ive  and then integrate  it t e r m - b y - t e r m  with r e spec t  to the radius .  After  the integrat ion we 
obtain: 

r OT 1 ( 0 7 '  (1 
Or 2 J OX 

0 

Next, we where  CI(X) ~ 0, in view of the condition (2a). 
again in tegra te  it with r e spec t  to the radius:  

T--= Te( X) + - - ~  --7- 
0 

Here  Te(X) denotes the value of the t e m p e r a t u r e  of the liquid at the axis of the tube. 
proximat ion ,  we take the t e m p e r a t u r e  prof i le  in the fo rm:  

T = a (X) + b (X) r ~r 

- -  r 2) rdr + C 1 (X), (3) 

divide both s ides of the resul t ing equation by r and 

r 

~ ~ (1 Or - -  r 2) rdrdr. 

0 

(4) 

At a f i r s t  ap-  

or,  a f te r  sat isfying the condition (2b), 

T = a +  q-~r  ~. (5) 
t~ 

We substi tute this approx imate  dependence of the t e m p e r a t u r e  on the radius  into the r ight  side of Eq. 
(4) and make the two quadra tures  indicated. We then obtain a second approximat ion for  the t e m p e r a t u r e  
prof i le  in the fo rm:  

T = T ~ ( X ) - ~ - ~ { ~ -  4 16 96, -F -~-  " dX a ~ " - ~  

( r ~~-2 r ~+4 32(2a 4-7) ) 
• ( a + 2 )  ~ (a-~-4) z -  (a ,+2) 2 ( a + 4 )  ~ (a -i- 6) (a § 8) 

~ "dx l ~  l n r - ~  (~+4) 2 l n r - ~  .4 

__ 16 ( 2a~ + 25~ + 76 2a2 + 17~ + 34 )]}. 
(a + 4) 2 (a -k- 6) , (cr + 4) (~ + 8 )  2 (a -]- 2) 2 

In the method descr ibed  in [1, 3], the second approximat ion  for  the des i red  function depends,  in all, 
on only one unknown p a r a m e t e r ,  and, upon sat isfying one of the boundary conditions, we obtain an ord i -  
na ry  different ial  equation, which enables us to find how this p a r a m e t e r  va r i e s  with the longitudinal coordi -  
nate. 

In our case ,  to find the functions a(X) and ~(X), we substi tute the express ion  (5) into Eqs. (3) and (4) 
and we take the l imits  of integrat ion in the in tegra ls  appear ing in these  equations equal to one. Then a f te r  
integrat ing and making a number  of s imple  manipulat ions,  we obtain the two equations: 

X 

t a =  t 4-8 q d X - -  8q (7a) 
. ~ (a + 2) (a -~- 4) ; 
0 

da ( a §  2)3(~-]-4) 3 I 4 - - 3 a  3c~+ 10 1 dq ] (7b) 
dX 9a 2 + 58~ -p 96 [ a + (a ~- 2) 2 (a -I- 4) 2 q dX J 

(6) 

with the initial condition ~ ~ ~o for  X ~ 0, which follows f rom the relat ion (2c). It is of in te res t  to note 
that  the express ion  (5) can, with the aid of the resu l t s  obtained f rom solving Eqs. (7a) and (7b), de sc r ibe  
the t e m p e r a t u r e  prof i le  accura te  to within 8-10%, and it can some t imes  be used by i tself  as an approx imate  
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solut ion of Eq. (1). In f inding the unknown funct ion Te(X) appear ing  in the e x p r e s s i o n  fo r  the t e m p e r a t u r e  
(4), we used the r e l a t ionsh ip  fo r  the bulk flow t e m p e r a t u r e .  We wr i te  the mean  t e m p e r a t u r e  in the f o r m :  

1 

Y = 4 .i" (1 - -  P) Trdr .  
0 

Then f r o m  Eq. (1), us ing the condit ion (2b), we can eas i ly  obtain the fol lowing re l a t ionsh ip :  

1 1 

4 f(l--r 2) OT r d r - - 8  i 0 (r OT 1 a Y , t - y ; -  j er, 

O' o 

X 

T-= 1 + 8  i'qex. 

The cons tant  of in tegra t ion  in the l a t t e r  equation, by  v i r tue  of the condi t ion (2c), is equal to one. 
Next, we subs t i tu te  the e x p r e s s i o n  (4) into Eq. (8), c a r r y  out the in tegra t ion ,  and then,  us ing  the r e l a t i on  
(9) be tween  the r e su l t ing  value  of the bulk t e m p e r a t u r e  and the heat  flux, we find the unknown funct ion 
Te (X): 

96 d X  , a d X  a 2 " d X  

32 (2a -~- 7) 16q 
X 

(co ,'-- 2) ~ (a + 4) ~ (~z + 6) (~z + 8) (~ + 4) ~ (~ +6) 

(8) 

(9) 

(~ + 4) (~ + 8) 5 (~ + 2y d - f f  

Thus the e x p r e s s i o n  (6), t o g e t h e r  with the r e s u l t s  of solving Eqs .  (7a) and (7b) and a l so  the e x p r e s -  
s ion  (10), d e s c r i b e s  the t e m p e r a t u r e  p rof i l e  of the flow of an i n c o m p r e s s i b l e  l iquid moving in the init ial  
portion of a circular tube. 

For subsequent refinement of the temperature profile so obtained, we can use the expression (6) as 
a first approximation. It should be noted, in proceeding, that the steps to be followed remain unchanged, 
except that the second derivatives of the functions a(X) and (~ (X), which arise in substituting the expression 
(6) into the right side of Eq. (4), can be obtained by differentiating Eqs. (7a) and (7b). However experiment 
shows that there is no practical need for further refinement of the expression (6), since the accuracy with 
which it describes the temperature profile (1.5%) is sufficient for engineering calculations. The depen- 
dence of the Nusselt number Nu on the coordinate X may then be represented in the following form: 

N u = 4 8 / [ l l - -  l l a +  106 i dq 

,/L (~ + 2) (c, + 4) (c, + 6) (c, + 8) q dX 

_ ( 3 ~ - - 4 1 d q _  3 ~ - ] - 1 0 )  • 
a q dX (c~ 5- 2) 2 (~x + 4) 2 

(a [- 2) (o~ + 4) (330~ 4 -I- 864a 3 -/7900 o~2 + 295800~ + 38176) ] 
• (90~ ~ + 5&z + 96) (c~ + 6) 5 (a + 8) ~ [./ 

As an example  of the appl ica t ion  of our  method we solved a n u m b e r  of h e a t - t r a n s f e r  p r o b l e m s  d i f f e r -  
ing f r o m  one another  t h rough  the va r ious  laws d e s c r i b i n g  the supply  of heat  along the wall of the tube. The 
change in the Nusse l t  n u m b e r  Nu with X is shown in Fig.  l a  (curve  1, ca lcu la ted  for  the case  q = const) .  
Curve  2, d rawn  fo r  c o m p a r i s o n ,  shows the va r i a t ion  of the Nusse l t  n u m b e r  Nu obtained as the r e s u l t  of 
n u m e r i c a l l y  solving Eq�9 (1) [6]�9 F o r  X > 0�9 the d i f fe rence  be tween the cu rves  amounts  to  1-2~ In Fig .  
lb  the dependence  of the Nusse l t  number  Nu on X is shown fo r  an exponential  law of heat  supply  (q = exp 
�9 (cX)). C u r v e s  2-5 c o r r e s p o n d  to va lues  of the coeff ic ient  c - 1 0 ,  - 2 0 ,  20, and 40, r e spec t ive ly �9  Curve  l 
c o r r e s p o n d s  to the heat  supply  law q = const .  

By an analogous  method we solve the p r o b l e m  of the f r i c t ion  of an i n c o m p r e s s i b l e  liquid in l a m i n a r  
f low in the initial po r t ion  of a t h e r m a l l y  insula ted c i r c u l a r  tube. We, a s s u m e  that  the liquid has cons tant  
phys ica l  p r o p e r t i e s ,  that  the p r e s s u r e  depends only on the longitudinal  coordina te ,  and that  the ve loc i ty  
p rof i l e  is cons tan t  over  the en t r ance  sec t ion  of the tube. 

We in t roduce  the nota t ion:  

X x r '  2r u' u v' v p, P = ., = __. ,  = - - ;  = ----; - -  
d Re d Uo Uo 9u~ 
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Fig.  1. V a r i a t i o n  of the Nusse l t  n u m b e r  Nu along the 

length of a c i r c u l a r  tube:  a) q = const ;  b)  q = exp (cX). 

and, hence fo r th  omi t t ing  p r i m e s  for  conven ience ,  
of the i n c o m p r e s s i b l e  l iquid in  the tube in  the fol lowing fo rm:  

Ou Ou dP ~_ 4 0 
u - -  + 2v Re . . . . . .  

OX Or d X  r Or 

with the bounda ry  and in i t i a l  condi t ions :  

we wr i t e  the s y s t e m  of equat ions  d e s c r i b i n g  the mot ion  

~ r Or J 
(11) 

(ur) + 2Re :---  (vr) = 0 
OX Or 

r = O Ou = 0 ,  Ov = 0, (12a) 
Or Or 

r = l  u = 0 ,  v = 0 ,  (12b) 

X = 0 u 1, p = Po = v = O. (12c) 
pu0~ , 

OU 
rdr 

OX 

We now solve the second  equat ion  of the s y s t e m  (11) for  v, 

v - 2Re r 
0 

and subs t i tu t e  it  into the f i r s t  equa t ion  of the s a m e  sy s t e m.  We solve  the r e s u l t i n g  equat ion for  the h ighes t  
d e r i v a t i v e  and, upon in t eg ra t i ng  twice ,  t ak ing  the condi t ions  (12a) and (12b) into account ,  we obta in  the fol-  
lowing e x p r e s s i o n :  

l __I u2rdrd r __ _ _ 0  __1 u~rdrd r 
u = T r o x  r 

0 0 0 0 
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Fig. 2. Variat ion of the axial veloci ty in the initial port ion 
of a c i r cu la r  tube (a) and of the local r e s i s t ance  coefficient 
in the initial port ion of a c i rcu la r  tube (b). 

_ _ (  u Ou u Ou rdrdr + rZ--l__ __dP . (13) 
J r OX r X 4 dX 
0 0 0 0 

We write the f i r s t  approximation to the veloci ty  prof i le  in the fo rm 

u = ue (X) (1 - -  r ~(x~) (14) 

and then substi tute this express ion  into the r ight  side of Eq. (13). Then, af ter  integrating, we obtain a 
second approximation to the veloci ty  prof i le :  

u=--d-X- \ 4 (sq-2) 2 ~ 4 ( s + 1 )  2 

ur dur (r2--1 (s-k4)(r~+2--1) P~+2--1 ) 
- - 4 -  ' dX 4 2 ( s - k 2 )  2 -k 2(s -kl ) (s -~-2)  

Ue ds In r - -  - -  
-k 4 dX L ( s q - 2 )  2 ~ 2 ( s -~ -2 ) ( s+  1) 

• ( ln r - -  3 s + 4  ) _s(5s+6) ] r2--1 dP (15) 
2 (s + 2)(s -+- 1) -~ 4 (s + ] ) ~  ~- 2) 3 + 1-~- dX 

After  eliminating v f rom the f i r s t  equation of the sys tem (11), we t r ans fo rm it to a fo rm analogous to 
the equations (3) and (4): 

j i O u  r 2 d P  Ou 0 u2rdr - -  u rdr . . . .  
OX " OX 2 dX + 4r--,Or 

0 0 

0 ~ u du rdrdr = c)X J T u2rdrdr . . . . . .  r OX 4 dX t- 4u + C 1. 
0 0 0 0 
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We substitute express ion  (14) into the right side of the resul t ing equations and set the upper l imits  of 
the integrals  appearing in these equations equal to one. Then, af ter  making some simple manipulations, 
we obtain a sys tem of two differential  equations: 

d 

d 

U due [ l 

dX L 4 

2 ds [ _  2 
4- u~ ~ [ (s -~- 2) - - - - - 7  4- 

s 2 ] 1 dP 4ues; 
- -  u~ 2 ( s - k  1 ) ( s +  2) = 2 d - - X - -  

(s+ 2 ) ~  -F 4(s-t- 1) ~ 

s + 4  1 ] 
2 ( s + 2 )  e + 2 (s -4-1) (s + 2) 

3s-F4" ] = - -  1 dP 
4 (s 4-1)~ (s 4- 2) 2 4 dX 

- - -  4u~ (16) 

with the initial conditions: for  X = 0, s ~ ~;  Ue = 1; P = P0/PU~ in view of the condition (12c). 

To find yet another relat ionship between the unknown functions we use the outflow equation 

1 

2 .[, urdr = 1. 
0 

Substituting the express ion (14) into this la t ter  equation, we obtain 

s §  
U e 

S 

After  some simple manipulations the sys tem (16) reduces  to 

dP _ 1 d s  _ 8 ( s + 2 ) ;  
dX (s + 1) ~ dX 

ds 4 ( s + 2 ) / [  1 ( 2 (3s+4)  3 s + 2  ) 
dX - 7  1 (s--I-2) ~ 4 2 (s+1 )  2. 

(3s + 5) s ]. 
2 (s 4- 1) 3 (s ~- 2) 1 

Thus the express ion  (15), with the aid of the re la t ion (17) and the resul ts  obtained f rom solving the 
sys tem (18), descr ibes  the veloci ty prof i le  for  the flow of an incompress ib le  liquid in a cyl indrical  tube. 
Just  as in the hea t - t r ans fe r  case,  the accuracy  of the resul t ing express ion  is in p rac t i ce  sufficient for  
engineering calculations. 

The dependence of the res i s tance  coefficient on X may be represen ted  as follows: 

(17) 

(18) 

~ R e = 1 6 ( s + 2 ) - - 8 / [  (s-F1)~ ,(1 (3s+4) ' 3 s + 2  ) 
s e ( s - 2 )  (s4-2) e 4- 2 ( s+  1) 2 

(3s + 5) s ] .  
2 (s + ]) (s ~ - -  4) J 

In Fig. 2a the var ia t ion of the axial veloci ty  with X is shown {curve 1); as a comparison,  curves  2 
and 3 show the variat ion of the axial veloci ty as computed by the methods of [2] and [4], which are ,  as is 
well known, among the most  accurate .  

In Fig. 2b the dependence of iRe  onX is shown {curVe 1); as a comparison,  curve 2 r ep re sen t s  
Targ ' s  solution [2]. Fo r  X > 0.001, the difference among these solutions amounts to 1-2%. 

It should be pointed out, in conclusion, that the prac t ica l  application of our method is c losely  con- 
nected with the choice of a good initial approximation. This approximation should re f lec t  the main fea tures  
of the des i red  function and, if possible ,  should approach its asymptot ic  value. 

N O T A T I O N  

x is the axial coordinate;  
r is the radial  coordinate;  
u, v a re  the axial and radial  components of the velocity;  
p is the density of the liquid; 
P is the p r e s s u r e  of the liquid; 
T is the t empera tu re  of the liquid; 
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q 

Po 
Uo 
To 
~o 
Cp 
Re = duo/# 0 
Pe  

Nu 
d 
fi 

k 

is the 
is the 
is the 
is the 
is the 
is the 
is the 
is the 
is the 
is the 
is the 

is the 

is the 

heat flux at the walls of the tube; 
p r e s s u r e  of the liquid at the tube entrance;  
axial veloci ty  component at the tube entrance;  
t empera tu re  of the liquid at the tube entrance;  
liquid v iscos i ty  at the tube entrance;  
specif ic  heat of the liquid; 
Reynolds number;  
Pec le t  number;  
coefficient of local f r ic t ion  of the liquid; 
Nusselt  number;  
d iamete r  of the tube; 
mean liquid velocity;  
thermal  conductivity of the liquid. 

2. 
3. 
4. 
5. 

6. 
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